Skip to main content
  1. Research topics/

Cognitive system

Investgation of the role of the cognitive system in aggression in mental disorders. The cognitive system supports the quick and flexible adaptation to social demands including processes such as inhibition and regulation, goal and response selection, as well as representation. In the context of aggression, cognitive control may be the most important part of enabling self-regulation in response to frustration or threat.

Projects


B01: Neurobehavioral effects of repetitive prefrontal transcranial direct current stimulation (tDCS) on pathological aggression

TDCS will be used as an interventional tool to decrease aggression. Using a simultaneous tDCS – fMRI approach, the project aims to enhance cognitive control by repeated prefrontal brain stimulation, investigating its effect on aggression. In addition to gauging tDCS responsivity, identifying the role of individual factors such as genetic profiles in aggression will be a particular focus of this project. By examining brain activity at multiple time points (e.g., before, during multiple stimulation sessions and after tDCS), it will add to the understanding of mechanisms underlying neural tDCS effects and help to identify individual factors that predict responsiveness to the stimulation. To determine the therapeutic potential, we will include psychiatric patients with substance use problems, a group of criminal, violent offenders, and healthy matched controls.

B02: Young offenders’ self-regulation deficit as a common mechanism for aggressive behavior and psychopathology - neural mechanisms and role of adverse childhood experiences

This project aims to identify cognitive and emotion control deficits in the context of negative valence and threat interference and their association with ACE in young offenders. Complementary to other projects, this project will focus on a group of young people defined by their propensity to aggression showing at the same time more severe psychopathologies. In a series of studies using multimodal imaging (EEG-fMRI, EEG-sMRI) in combination with naturalistic longitudinal follow-up (ecological momentary assessment (EMA)) B02 will identify the neural mechanisms and predictors of self-regulation deficits as a putative common developmental pathway for both, aggressive behavior, and psychopathology. Additionally, B02 will seek to causally confirm neural network mechanisms of inhibitory control and emotion regulation deficits as the basis of aggressive behavior and associated psychopathology by real-time EEG-triggered TMS-stimulation in young offenders.

B03: A process-based brain-computer interface to modulate aggressive behavior – a real-time fMRI neurofeedback study

Probe the self-regulation of CS networks in adults and adolescents diagnosed with mental disorders related to frequent stress-associated affective outbursts and aggressive symptoms in posttraumatic stress disorder (PTSD), and BPD. The patients will subsequently be trained to regulate the frontal control network to varying acute threat in a double-blind, randomized, controlled design. An immersive, virtual brain- computer-interface (BCI) will allow for a culture- and age-sensitive, personalized training approach. The aim of the present investigation is to assess feasibility of the approach according to four clinical markers: Reduction of perceived threat and aggressive behavior in daily life, improved control in the face of unfair provocation, and neurofeedback-specific modulation of the neural networks.

B04: Investigating psychological and neural correlates of intimate partner violence

Focus on the neural correlates of characterizing cognitive control deficits during conflict situations. The project will investigate patients with varying levels of cognitive control along with their close partners (sibling or intimate partner) to identify the dynamics of self-regulation and co-regulation in provoked conflict situations in patients with control deficits. To identify the precursors and dynamics of conflict escalation, the project will apply measures of behavioral reactions, skin conductance, simulated or real conflict, fMRI and fMRI-hyperscanning techniques and physiological measures. Neuroimaging data will also be combined with information on stress, control and conflicts in real-life via EMA.

B05: Predictors and (neuro-)biological correlates of (cyber-)bullying and victimization in real-life contexts

Focus on the investigation of a lack of cognitive control in bullies and victims that contributes to the risk of developing mental health problems. Therefore, the project will assess bullies and their victims in real-life and digital social interactions to investigate how aberrant cognitive and affective prefrontal control and sensitivity to peer rejection with accompanied alterations in autonomic arousal may increase externalizing and internalizing behavior. To this end, a unique combination of ambulatory assessments of (cyber-)bullying, functional neuroimaging (emotion regulation, inhibition, social exclusion), physiological assessments (heart rate variability) and clinical trait-related questionnaires will be applied. Decoding dynamic

Publications


Complex Network Responses to Regulation of a Brain-Computer Interface During Semi-Naturalistic Behavior

Brain–computer interfaces (BCIs) can be used to monitor and provide real-time feedback on brain signals, directly influencing external systems, such as virtual environments (VE), to support self-regulation. We piloted a novel immersive, first-person shooting BCI-VE during which the avatars’ movement speed was directly influenced by neural activity in the supplementary motor area (SMA). Previous analyses revealed behavioral and localized neural effects for active versus reduced contingency neurofeedback in a randomized controlled trial design. However, the modeling of neural dynamics during such complex tasks challenges traditional event-related approaches. To overcome this limitation, we employed a data-driven framework utilizing group-level independent networks derived from BOLD-specific components of the multi-echo fMRI data obtained during the BCI regulation. Individual responses were estimated through dual regression. The spatial independent components corresponded to established cognitive networks and task-specific networks related to gaming actions. Compared to reduced contingency neurofeedback, active regulation induced significantly elevated fractional amplitude of low-frequency fluctuations (fALFF) in a frontoparietal control network, and spatial reweighting of a salience/ventral attention network, with stronger expression in SMA, prefrontal cortex, inferior parietal lobule, and occipital regions. These findings underscore the distributed network engagement of BCI regulation during a behavioral task in an immersive virtual environment.

Physiological fingerprinting of audiovisual warnings in assisted driving conditions: an investigation of fMRI and peripheral physiological indicators

Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e., heart rate variability (HRV) and respiratory rate) is unknown, making it difficult to study the neural mechanism during takeover from the assistance system. In this paper, we established a mapping between the ANS regulation and brain activations of driving events in function magnetic resonance imaging (fMRI)-conditioned audiovisual warnings experiment to add physiological fingerprints for assisted driving. Firstly, we used the general linear model (GLM) to obtain brain activation clusters of driving events and brain activation clusters of peripheral physiological indicators in different frequency bands. Secondly, we redefined the input parameters based on the driving events to calculate the GLM to obtain the brain activation clusters of event-related physiological indicators. Finally, the relationship between the main activation clusters of driving events and the activation of event-related physiological indicators was quantified by the statistical test of the mean-time course of voxels within the region. The results showed that related areas of the brain responsible for movement, visceral autonomic regulation, auditory, and vision actively responded to the audiovisual warnings of automatic driving. The mappings created using them revealed that the correlation between driving event-related activation of brain regions and respiration worked at the onset of audiovisual warnings, especially between the intermediate (IM) and low frequency (LF) bands. For pre-emergency and takeover in audiovisual warnings, the correlations of HRV were dominant, with significant differences among LF, IM and high frequency (HF) bands. At different periods of audiovisual warnings, HRV and respiration play different roles in physiological fingerprints. Compared to respiratory indicators, HRV has higher sensitivity to emergency situations. This study investigates the interaction between driving-related network activity and ANS regulation, revealing the profound connection between driving behavior and neural activity, and contributing to the research of driving assistance systems.

Autonomic regulation during cognitive reappraisal in major depressive disorder: a study of fMRI correlates

Background Emotion regulation mediated by cognitive reappraisal can induce activity changes in brain areas and fluctuations in peripheral physiological indicators regulated by the autonomic nervous system (ANS). However, little is known about the relationship between emotional and ANS regulation in major depressive disorder (MDD). In specific, the intermediate band (IM; 0.12–0.18 Hz) is thought to reflect relaxation and emotion processing.